If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+340t+500=0
a = 5; b = 340; c = +500;
Δ = b2-4ac
Δ = 3402-4·5·500
Δ = 105600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{105600}=\sqrt{1600*66}=\sqrt{1600}*\sqrt{66}=40\sqrt{66}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(340)-40\sqrt{66}}{2*5}=\frac{-340-40\sqrt{66}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(340)+40\sqrt{66}}{2*5}=\frac{-340+40\sqrt{66}}{10} $
| 3(a+4)-7=8a | | z^2+15z-20=0 | | 3(3x-7=6 | | 2/5(x-3)=10 | | 5x-13+14=116 | | 5.25+5=16.5t+14 | | 7g-9=-30 | | 2.5y-3.75=0.75y+-9 | | 14x-7+10x+8x=180 | | 18=10+4p | | 2u=4−2u | | 3q=6+2q | | (6x-15)=(5x-1) | | 0=(25-3x)(x+16) | | 2(6+2)=8x | | 37x+1=21x+5 | | 2(6=2)=8x | | 13^5x=14 | | -5x+17=7x-13 | | (10+19)10=(12+c)12 | | -2x+34=3x-24 | | (9+20)9=(13+c)13 | | 3x+5=5x-57= | | 8x+2=88 | | Y=3x+6Y=5x+8 | | Y=14*2^x | | a-10=103 | | 9p-8+8=9p | | 5x+x=54=90 | | 32x-2=24 | | 8y=5y-20-15 | | 10x-3/5=29 |